
Research Statement Subhadeep Sarkar (subhadeepsarkar.bitbucket.io)

My research aims at building data systems for emerging data and applications characteristics with a
focus on privacy protection of user data from a systems perspective. Today, businesses, technologies,
and scientific applications generate data at unprecedented rates and volumes. Thus, one of the key
design goals of modern data systems has been to make them more ingestion-friendly. At the same time,
with the emergence of new data protection regulations across the globe, protecting user data privacy
has become critical. However, the design principles of write-optimized data systems are fundamentally
conflicting with those of a system that protects data privacy. To this end, the goal of my research is to
design data systems that can offer high performance in the face of the ever-evolving workloads, while
protecting data privacy. Building Deletion-Compliant Data Systems

Diverse application requirements

User-triggered
on-demand deletes

SLA-driven
retention-based deletes

Augmenting query language to
extend support for deletes [5,6]

Designing deletion-aware
data layouts and access

methods [5,9]

Navigating privacy-
performance tradeoff [4,8]

New legal regulations
+

Analyzing state of the art [2,3,7]

Extracting regulatory
requirements [1,5,6,12]

+

The quest of building ingestion-optimized data systems
has led to the birth and widespread adoption of a new class
of systems that are based on the out-of-place paradigm.
By design, out-of-place systems realize updates and
deletes logically by inserting a newer version of the en-
tries. The logically invalidated entries are retained in the
database for arbitrarily long. This has severe implications
on both privacy and performance fronts because (i) logi-
cal deletion does not guarantee timely and persistent dele-
tion of data, which is a key requirement for several privacy
regulations, and (ii) any attempt to demonstrate regulation
compliance by periodically purging the data under dele-
tion is extremely costly and severely hurts performance.

My research enables privacy-through-deletion as a design
element in modern data systems by empowering them with the ability to delete data timely and per-
sistently, without hurting performance. I begin by looking at the core of data systems, i.e., the data
structures and access methods to formalize the design space of data systems by introducing the first-
order primitives of data layout construction and reorganization techniques [1, 3, 4, 8]. Next, I introduce
a workload-aware model to navigate this design space, highlighting how the fundamental elements of
data structure and access method design interact with system performance [2, 7, 12]. Based on this, I
introduce the tools at the systems and application levels to ensure privacy through deletion [5, 6, 9].

1 Present and Past Research
Out-of-Place Data Structures and LSM-Trees. The ever-increasing need for fast data ingestion and
fast query processing has driven the widespread adoption of the out-of-place paradigm across modern
NoSQL data systems. The key design principles of these out-of-place, ingestion-optimized storage
engines are: (i) realize updates and deletes out of place, without eagerly modifying the target data ob-
jects, (ii) lazily merge the new entries with the older ones, and (iii) maintain order among the ingested
entries to ensure query correctness. The log-structured merge (LSM) paradigm fits the bill perfectly,
and due to this, LSM-trees are widely used as the out-of-place, storage-based data structure in sev-
eral NoSQL data stores. LSM-trees store data as key-value pairs and arrange them as a hierarchical
collection of sorted components or levels at the device level [3].

1

https://subhadeepsarkar.bitbucket.io

Deletes in LSMs. As an out-of-place data structure, instead of deleting a target entry in-place, LSM-
trees insert a special type of key-value pair, known as a tombstone, that logically invalidates the target
entries [9]. Logical data deletion is a quintessential LSM operation, but it does not guarantee purging
of the data under deletion within a definite time-frame. While the data marked as invalid remains
inaccessible to external users, in practice, the logically deleted entries are retained for arbitrarily long
in the system [9]. In fact, most out-of-place data stores are built with the underlying assumption of
perpetual data retention in order to gain more insights from the user and organizational data, hence
timely persistent deletion has not been part of their design goals.

The Legal Frontier & the Overarching Question. In recent years, a number of government-driven
efforts across the globe unfolded, aiming to protect the privacy of user data and give back to the users
the control of their personal data. On the legal side, regulations such as the EU’s GDPR, Califor-
nia’s privacy protection acts – CCPA and CPRA, and Virginia’s VCDPA have been introduced, which
mandate data companies to ensure privacy through deletion. GDPR’s right to be forgotten, CCPA
and CPRA’s right to delete, and the deletion right in VCDPA particularly focus on persistent deletion
of user data on-demand and in a timely manner. Thus, to demonstrate regulation compliance, ser-
vice providers must persistently delete all copies of the data under deletion in a time-bound manner.
However, as we pointed out earlier, state-of-the-art LSM engines are unable to provide any latency
guarantees on persistent deletion of data. In fact, in principle, the design goals of out-of-place systems
are antithetical to those of ensuring timely delete persistence [5]. Thus, in practice, service providers
end up performing a database-wide operation on a periodic basis (typically, every few weeks) to check
and purge all invalid entries that are older than a threshold. This is a remarkably expensive operation
that also adversely affects the overall performance of the system. So in a nutshell, modern out-of-place
data stores are unable to support timely data deletion, and any attempt to demonstrate compli-
ance with the deletion regulations does not scale. This begs the question: how can we make data
systems delete data persistently and timely without compromising system performance?

Step 1: Understanding the Design Principles of Storage Engines. Our first work aims to dissect the
internal design and operating principles of storage engines at the fundamental level of data structures
and access methods. We study the design principles of more than ten state-of-the-art commercial and
academic data systems and then implement them on an open-source storage engine (RocksDB) for
fair evaluation and comparison. We then perform upward of 2,000 experiments with various config-
urations, tunings, and workloads to capture the implication of the different first-order design choices
on performance. We uncovered several interesting and seemingly non-intuitive takeaways from this
experimental study that would go on to help us build systems that can support timely data deletion by
design [8]. Further, to visualize how the design choices affect the performance space, we designed an
interactive demonstration website [4].

Step 2: Identifying and Translating the Regulatory Requirements. In parallel to Step 1, we also
strived to extract the regulatory requirements for deletes by inspecting the legal policies [12]. We
identify the two types of data deletion requests that must be supported in order to demonstrate compli-
ance [5]. (A) On-demand deletion, where the user submits an ad-hoc deletion request, and the service
providers must persistently delete the data within a threshold duration. (B) Retention-driven deletes,
where the user sets a retention duration, and any data older than that, must be persistently deleted from
the data stores. Next, we needed to translate these deletion requirements into system-interpretable in-
structions. The interface of data stores is typically declarative query languages (e.g., SQL, GraphQL,

2

DMX, LINQ, and N1QL) that support expressing complex queries as well as inserting new data, up-
dates, and deletes. Thus, we extended the query language to capture the deletion requirements and
express them to the underlying storage engine [6].

Step 3: Supporting On-Demand Deletes Timely and Efficiently. From our experimental analysis
in Step, we identified that a database’s internal data reorganization/consolidation mechanisms (i.e.,
compaction for LSM-trees, node split/merge for B-trees, etc.) play a critical role in our quest to per-
sisting logical deletes in a timely and efficient manner. We observed that design decisions such as
when a database reorganizes/consolidates data and how exactly the consolidation takes place influ-
ence the entire performance space of a storage engine, including an engine’s ability to persist deletes
in a timely manner. The key intuitions behind our solution are: (i) use the file-level metadata to track
the age of a tombstone, (ii) trigger inter-level data consolidation based on the age of tombstone and
a temporal threshold set for a level, and (iii) choose the appropriate files for consolidation, aiming to
timely purging of the tombstones. The proposed solution not only guarantees timely persistence of
logical deletes, but by doing so, also achieves 2×-9× lower space amplification and 1.2×-1.4× higher
read performance [9]. The solution is simple and easily integrable to production systems, and a variant
of this solution is now supported by RocksDB, a widely used, open-source key-value store.

Step 4: Supporting Retention-Based Deletes. Retention-based deletes entail deletion of a fraction of
a database every day on a rolling basis, and state-of-the-art key-value stores are unable to support this
operation when data is not already ordered on some time-attribute (which is rare in non-time-series
databases). This is a very complex operation as the data is typically stored as sorted on a primary
attribute (let’s call this the sort key), and the deletion is to be performed on some secondary temporal
attribute (we call this the delete key). Our key intuition to solve this problem was to embed an order-
ing of the data based on the delete key without completely destroying the order on the sort key. We
introduced a new weaved data layout between the (primary) sort attribute and the (secondary) delete
attribute. The benefit of this weaved data layout is that for retention-driven deletes, we can discard
entire blocks of data at a time, signaling the file system to reclaim this page; essentially converting the
delete action to a page reclamation action that has very low latency compared to a full database consol-
idation. The proposed interweaved data layout reduces the cost of retention-based deletes significantly,
between 4× and 31× even for a workload with a relatively small fraction (2%) of deletes [9].

First Steps Toward a Longer-Term Goal. Building data systems that are designed to process deletes
gracefully and are able to demonstrate regulation compliance is an eagerly sought-after endeavor that
benefits multiple stakeholders in the data-driven service framework. In practice, all data systems
exhibit an intrinsic trade-off between performance and privacy protection. The high-level challenge is
to be able to propel this trade-off curve closer to the Pareto optimal and efficiently navigate it based
on workload and target performance. To this end, my current research helps lay out the fundamental
principles and the framework, but moving forward, there are still several steps to be taken before we
can realize the goal of building truly deletion-compliant data systems.

Past Research. As part of my doctoral research, I have worked on deploying cloud infrastructure for
practical application scenarios, e.g., healthcare and disaster management scenarios and benchmarking
fog/edge computing platforms. The results of my doctoral research have been published in several
top-tier journals [10, 14, 15, 16, 17, 18, 20, 21, 24] and conferences [19, 22, 23, 25]. My doctoral
thesis won the second best PhD thesis award at the 5th IDRBT Doctoral Colloquium [13]. I have also
co-authored a book on fog computing and Internet-of-things that was published by CRC Press [11].

3

2 Future Research
My long-term research goal is to design data systems that can meet the diverse application require-
ments and performance goals in the face of ever-evolving workloads while protecting user data pri-
vacy. Toward this, I have identified three key research directions: (i) designing scalable data systems
that optimize energy consumption without hurting performance, thereby, moving toward “greener”
computing frameworks, (ii) designing data systems tailored to the underlying properties of evolu-
tionary hardware to offer optimal performance, and (ii) enabling timely and persistent data dele-
tion for geo-distributed cloud applications. Given my expertise in designing privacy-aware data sys-
tems [1, 3, 5, 6, 9, 12], navigating the performance tradeoffs in modern data systems [2, 7, 4, 8], and
building systems on cloud [11, 16, 14, 17, 24], I am well-equipped to address these research challenges.

Green Storage Engines to Manage Exabyte-Scale Data. Data stores will soon be managing exabytes
of data that entails unforeseen challenges in terms of infrastructure, cost, and practicality. Storing
and processing high volumes of data entails consumption of a remarkably high amount of energy
across the several components of the data management pipeline. My goal is to introduce energy as
a design dimension of data structures and data systems. I plan to redesign the data structures and
access methods by reasoning about every single design choice and how it impacts to hardware usage
and energy consumption. My outlook is to first create the building blocks by constructing the energy
profile of data structures (the smallest unit of systems), and then, recursively create and reason about
energy profiles of algorithms, models, systems, and finally, end-to-end pipelines.

Making the Most of Evolving Hardware. As technology advances, evolution of hardware becomes
a natural process where hardware becomes more sophisticated in terms of speed, configurability, size,
and design of control circuitry. Thus, it is crucial to redesign software so that systems can harness the
synergy of hardware-software co-design. My goal is to revisit and redesign existing data structures and
algorithms to take advantage of the underlying hardware. To give a concrete example, when running
LSM-trees on non-volatile memory (NVM), the device and and the data structure both garbage collect
in an asynchronous manner. This leads to a multiplicative write amplification cost hurting performance
and the device lifetime. To this end, I plan to program the device controller and design algorithms that
combine the data structure’s garbage collection routine with that of the device to reduce amplification.

Supporting Timely and Persistent Data Deletion in Cloud. With an increasing number of storage
engines moving to cloud, deleting user data timely and persistently becomes a very complex problem.
Within cloud, data is typically replicated several times and possibly across multiple regions. Deletes
and updates to a particular instance of data is propagated lazily to all its replicas. This is non conducive
to facilitating timely data deletion, and any attempt to demonstrate compliance with the delete regula-
tion would result into unnecessary data movement and increased operational cost. Further, as replicas
may be geo-distributed, they might also be subject to different privacy regulations. Managing data
governed by different privacy regulations from the same data store introduces provenance challenges.
I propose to address these challenges by enabling cross-domain data tracking, and domain-specific
modular privacy solutions within the cloud instances. The goal is to design tools and infrastructure
that can scale with data, application complexity, as well as tenancy.

4

References

[1] Subhadeep Sarkar, Niv Dayan, and Manos Athanassoulis. The LSM Design Space and its Read Opti-
mizations. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2023.

[2] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis. Indexing for Near-
Sorted Data. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2023.

[3] Subhadeep Sarkar and Manos Athanassoulis. Dissecting, Designing, and Optimizing LSM-Based Data
Stores. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 12489–2497, 2022.

[4] Subhadeep Sarkar, Kaijei Chen, Zichen Zhu, and Manos Athanassoulis. Compactionary: A Dictionary
for LSM Compactions. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 2429–2432, 2022.

[5] Manos Athanassoulis, Subhadeep Sarkar, Tarikul I. Papon, Zichen Zhu, and Dimitris Staratzis. Building
Deletion-Compliant Data Systems. IEEE Data Engineering Bulletin, 45(1), pages 21–36, 2022.

[6] Subhadeep Sarkar and Manos Athanassoulis. Query Language Support for Timely Data Deletion. In
Proceedings of the International Conference on Extending Database Technology (EDBT), pages 429–434,
2022.

[7] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar, Matthaios Olma, and Manos Athanas-
soulis. BoDS: A Benchmark on Data Sortedness. In Proceedings of the TPC Technology Conference on
Performance Evaluation & Benchmarking (TPCTC), 2022.

[8] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. Constructing and An-
alyzing the LSM Compaction Design Space. In Proceedings of the Very Large Databases Endowment
(PVLDB), 14(11), pages 2216–2229, 2021.

[9] Subhadeep Sarkar, Tarikul I. Papon, Dimitris Staratzis, and Manos Athanassoulis. Lethe: A Tunable
Delete-Aware LSM Engine. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 893–908, 2020.

[10] Sudip Misra, Pradyumna K. Bishoyi, and Subhadeep Sarkar. i-MAC: In-Body Sensor MAC in Wireless
Body Area Networks for Healthcare IoT. IEEE Systems Journal, 15(3), pages 4413–4420, 2020.

[11] Sudip Misra, Subhadeep Sarkar, and Subarna Chatterjee. Sensors, Cloud, and Fog: The Enabling Tech-
nologies for the Internet of Things. CRC Press, 2019.

[12] Subhadeep Sarkar, Jean-Pierre Banâtre, Louis Rilling, and Christine Morin. Towards Enforcement of the
EU GDPR: Enabling Data Erasure. In Proceedings of the IEEE International Conference of Internet of
Things (iThings), pages 1–8, 2018.

[13] Subhadeep Sarkar. Analysis of Delay in Wireless Communication for Healthcare Systems. PhD Thesis,
Indian Institute of Technology Kharagpur, 2017.

[14] Subhadeep Sarkar, Subarna Chatterjee, Sudip Misra, and Rajesh Kudupudi. Privacy-Aware Blind Cloud
Framework for Advanced Healthcare. IEEE Communications Letters, 21(11), pages 2492–2495, 2017.

5

[15] Prasenjit Bhavathankar, Subhadeep Sarkar, and Sudip Misra. Optimal Decision Rule-Based Ex-Ante
Frequency Hopping for Jamming Avoidance in Wireless Sensor Networks. Computer Networks, Elsevier,
128, pages 172–185, 2017.

[16] Subhadeep Sarkar, Subarna Chatterjee, and Sudip Misra. Assessment of the Suitability of Fog Computing
in the Context of Internet of Things. IEEE Transactions on Cloud Computing 6(1), pages 46–59, 2016.

[17] Subhadeep Sarkar and Sudip Misra. Theoretical Modelling of Fog Computing: A Green Computing
Paradigm to support IoT Applications. IET Networks, 5(2), pages 23–29, 2016.

[18] Subhadeep Sarkar and Sudip Misra. From Micro to Nano: The Evolution of Wireless Sensor-Based
Health Care. IEEE Pulse, 7(1), pages 21–25, 2016.

[19] Subhadeep Sarkar, Sudip Misra, and Mohammad S. Obaidat. Resource Allocation for Wireless Body
Area Networks in Presence of Selfish Agents. In Proceedings of the IEEE Global Communications Con-
ference (GLOBECOM), pages 1–6, 2016.

[20] Sudip Misra and Subhadeep Sarkar. Priority-Based Time-Slot Allocation in Wireless Body Area Networks
During Medical Emergency Situations: An Evolutionary Game-Theoretic Perspective. IEEE Journal of
Biomedical and Health Informatics (JBHI), 19(2), pages 541–548, 2015.

[21] Subhadeep Sarkar, Sudip Misra, Bandyopadhyay, B., Chandan Chakraborty, and Mohammad S. Obai-
dat. Performance Analysis of IEEE 802.15.6 MAC Protocol under Non-Ideal Channel Conditions and
Saturated Traffic Regime. IEEE Transactions on Computers, 64(10), pages 2912–2925, 2015.

[22] Subarna Chatterjee, Subhadeep Sarkar, and Sudip Misra. Quantification of Node Misbehavior in Wireless
Sensor Networks: A Social Choice-Based Approach. In Proceedings of the IEEE International Conference
on Communication Workshop, (ICCW), pages 1479–1484, 2015.

[23] Subarna Chatterjee, Subhadeep Sarkar, and Sudip Misra. Energy-Efficient Data Transmission in Sensor-
Cloud. International Conference on Applications and Innovations in Mobile Computing, (AIMoC),
pages 68-73, 2015.

[24] Subhadeep Sarkar, Subarna Chatterjee, and Sudip Misra. Evacuation and Emergency Management Using
a Federated Cloud. IEEE Cloud Computing, 1(4), pages 68–76, 2014.

[25] Subhadeep Sarkar, Sudip Misra, Chandan Chakraborty, and Mohammad S. Obaidat. Analysis of Reli-
ability and Throughput under Saturation Condition of IEEE 802.15.6 CSMA/CA for Wireless Body Area
Networks. In IEEE Global Communications Conference (GLOBECOM), pages 2405–2410, 2014.

6

	Present and Past Research
	Future Research

