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Abstract—Indexing in modern data systems facilitates efficient
query processing when the selection predicate is on an indexed
key. As new data is ingested, indexes are gradually populated with
incoming entries. In that respect, indexing can be perceived as the
process of adding structure to incoming, otherwise unsorted data.
Adding structure, however, comes at a cost. Instead of simply
appending the incoming entries, we insert them into the index.
If the ingestion order matches the indexed attribute order, the
ingestion cost is entirely redundant and can be avoided altogether
(e.g., via bulk loading in a B+-tree). However, classical tree index
designs do not benefit when incoming data comes with an implicit
ordering that is close to being sorted, but not fully sorted.

In this paper, we study how indexes can exploit near-
sortedness. Particularly, we identify sortedness as a resource that
can accelerate index ingestion. We propose a new sortedness-
aware (SWARE) design paradigm that combines opportunistic
bulk loading, index appends, variable node fill and split factors,
and an intelligent buffering scheme, to optimize ingestion and
read queries in a tree index in the presence of near-sortedness.
We apply SWARE to two state-of-the-art search trees (B+-
tree and Bε-tree), and we demonstrate that their Sortedness-
Aware counterparts (SA B+-tree and SA Bε-tree) outperform
their respective baselines by up to 8.8× (SA B+-tree) and 7.8×
(SA Bε-tree) for a write-heavy workload in the presence of data
sortedness, while offering competitive read performance, leading
to overall benefits between 1.3× – 5× for mixed read/write
workloads with near-sorted data. Overall, we highlight that
SWARE can be applied to other tree-like data structures to
accelerate index ingestion and improve their performance in the
presence of data sortedness.

Index Terms—Indexing, Data Sortedness, B+-tree, Bε-tree.

I. INTRODUCTION

Database indexing sits at the heart of almost any data system

ranging from full-blown relational systems [45] to NoSQL

key-value stores [30]. Indexes help accelerate query processing

both for analytical and transactional workloads by allowing

efficient data access of selective (range or point) queries.

Essentially, database administrators decide to build and main-

tain indexes on frequently queried attributes to improve query

performance. This comes at the expense of space and write

amplification [5], and the time needed to update the indexes.

Indexing Adds Structure to Facilitate Queries. We pay the

cost of index construction and maintenance because it adds
structure to the data, which in turn, allows for efficient queries.

As shown in Fig. 1 with the thick black line, every data orga-

nization technique exhibits a fundamental tradeoff between its

read and write cost. To achieve efficient logarithmic search
time for point queries, a classical index would insert data in

their correct position (in-place insertion, bottom right part of
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Fig. 1: State-of-the-art indexing and data organization techniques pay a higher
write cost in order to store data as sorted (or, in general, more organized) and
offer efficient reads. Since the goal of indexing is to store the data as sorted,
we ideally expect that ingesting near-sorted data would be more efficient,
which is not the case. We introduce the SWARE meta-design that offers better
performance as data exhibit higher degree of sortedness.

the figure). On the other extreme, if read queries are infrequent,

then scanning is acceptable, and instead of inserting entries

to an index, we can simply append them (leading to scans,

in the top left part of the figure). Indexes like B+-tree [25]

and Bε-tree [8], or even simple online sorting via in-place

insertion, navigate the read vs. write tradeoff. Since all data

organization efforts essentially add structure to an otherwise
unstructured data collection, one would expect they benefit

when such structure - data sortedness - already exists.

Data Sortedness. There have been several efforts to quantify

data sortedness [7, 16, 39], all of which essentially capture the

difference between the indexed order and the arrival order
of the indexed attribute (key). In practice, data entries may

arrive as near-sorted in several real-world cases. Consider the

TPC-H [51] lineitem table that has three date-related at-

tributes. Fig. 2a depicts the first 10, 000 values of shipdate,

commitdate, and receiptdate of the lineitem table,

and shows that when data arrives as sorted on shipdate,

the other two attributes are also very close to being sorted.

There are several other scenarios that lead to near-sorted data

collections. For example, (i) a relation that was sorted, but a

few new arbitrary updates took place [7], (ii) data that has been

created based on a previous operation, e.g., a join [7], (iii) data

that is sorted based on another naturally correlated attribute

(like the TPC-H example above) [4], or (iv) the timestamp

attribute of an incoming data stream that has a few data packets

arriving out of order due to network congestion.

Problem: Lack of Sortedness-Awareness. In this work, we

show that state-of-the-art indexes like B+-trees do not take

advantage of existing order to improve ingestion performance
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Fig. 2: (a) TPC-H implicit clustering between shipdate, commitdate,
and receiptdate leads to near-sorted columns when the data is sorted
based on one of them. (b) Ideally, index insertion performance should improve
when inserting already sorted or near-sorted data.

and exhibit poor utilization of memory space. While indexes

can already benefit from inserting a fully sorted data collection

via bulk loading [1, 19], this is assuming that data is available

at its entirety and its full sortedness is known a priori.
However, for most practical use-cases that ingest data on the

fly and build indexes online, bulk loading is infeasible, as

the indexes are agnostic to the sortedness of the incoming

(and future) data. We point out that when inserting data to an

index, the higher the data sortedness, the lower the insertion
cost should be for an ideal tree data structure, as shown in

Fig. 2b. Note that indexes like B+-trees do not exhibit any

performance improvement (by design) when inserting near-

sorted data. In fact, if data is inserted largely in near-sorted

order a B+-tree would have high space amplification, since,

in the absence of bulk loading, every node will be exactly half

full (as inserts are right-deep). In contrast, a sortedness-aware
index should achieve better read vs. write tradeoffs (dashed

lines in the shaded region of Fig. 1) as well as better space

utilization when ingesting data with increased sortedness (that

is, as we move closer to the origin of the green axis of Fig. 1).

We envision a new class of index data structures that exploit
sortedness to pay “less” indexing cost for near-sorted data.

Our Approach: SWARE. Toward this, we establish data

sortedness as a fundamental resource that can accelerate index

ingestion. We propose a new index design paradigm that

can exploit data sortedness to improve insertion performance

without hurting query latency. We achieve this by using an

ensemble of techniques that, when combined appropriately,

lead to a better performance improvement than any one of

them would do alone. Specifically, we employ an intelligent
buffering mechanism that is periodically partially flushed to

capture near-sortedness, combined with opportunistic bulk
loading and merging techniques to create a sortedness-aware
index. However, as is, the proposed approach comes at the

cost of a nominal increase in the query latency, since every

query may have to additionally search the buffer component.

To alleviate this cost, we augment the buffer with a collection

of Zonemaps [40], Bloom filters (BFs) [12], and query-driven
partial sorting, that amortize query cost close to the baseline.

The proposed sortedness-aware (SWARE) paradigm can be

applied to any state-of-the-art tree index to form its sortedness-

aware counterpart. We illustrate this by applying the SWARE

paradigm to a B+-tree and a Bε-tree to form their sortedness-

aware equivalents: SA B+-tree and SA Bε-tree. In a nutshell,

they both buffer incoming data to opportunistically bulk load

by reorganizing the out-of-order entries in memory, while re-

verting back to insertion from the root (top-inserts), otherwise.

Further, by adaptively sorting buffered data during queries, SA
B+-tree and SA Bε-tree avoid the overhead of sorting large

data chunks. To facilitate efficient query processing, they use

interpolation search for the sorted parts of the buffer and pay

only a constant cost of scanning a small amount of (unordered)

data. Note that the SWARE paradigm can make any tree-based

data structure amenable to data sortedness, and we use the B+-

tree and Bε-tree as two examples. SWARE is not a new index

per se, rather, a new framework for creating sortedness-aware
counterparts for any tree-based index.
Contributions. Our work offers the following contributions.

• We identify sortedness as a resource that can be harnessed

to ingest data faster in tree indexes.

• We propose a new index meta-design that employs buffer-

ing, partial bulk loading, and merging to enhance ingestion

by exploiting data sortedness.

• We augment this design to propose the SWARE
paradigm that encompasses query-driven sorting, merging,

Zonemaps, and hierarchical Bloom filters to offer compet-

itive performance for point and range queries.

• We apply the SWARE paradigm to a state-of-the-art B+-

tree, and we show that the sortedness-aware B+-tree (SA
B+-tree) can achieve up to 8.8× faster data ingestion with

competitive read query performance leading to performance

benefits of up to 5× in mixed read/write workloads.

• Further, we also apply the SWARE meta-design to a Bε-tree

to highlight that SA Bε-tree can achieve up to 7.8× relative

performance benefits against its standard counterpart.

• By applying the SWARE paradigm to a B+-tree, we reduce

space utilization by up to 48%.

II. BACKGROUND ON SORTEDNESS

In this section, we provide a brief background regarding

data sortedness and sorting algorithms used in this work.

Data Sortedness Metrics. Multiple metrics have been pro-

posed to capture data sortedness [2, 7, 16, 18, 22, 28, 39].

A natural way to quantify the degree of sortedness is to

measure how many elements are out of place, and by how
much. The (K,L)-sortedness metric [7] follows this idea using

two parameters: K, which captures the number of elements

that are out of order, and L, which captures the maximum

positional displacement of the out-of-order elements.

Sorting Algorithms. Few sorting algorithms take advantage of

the existing order in the input to optimize their performance [7,

15, 20, 34, 37, 44]. The (K,L)-Sorting Algorithm [7] is one

such adaptive algorithm that uses the (K,L)-metric to sort

a (K,L)-near sorted collection in at most two sequential

passes. The algorithm has a complexity of O(N · log(K+L))
(assuming N entries) and uses memory of size O(K + L).
We take advantage of the adaptivity of the (K,L)-sorting
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Fig. 3: Design elements aimed at exploiting data sortedness. (a) An in-order
entry can be directly inserted at the tail leaf if knew≥m. (b) If we have a
batch of new in-order inserts, they can be bulk loaded to the tree. (c) The
node split factor can be adjusted, so that a newly created node from the split
reserves more space for following inserts.

algorithm to quickly structure data in the buffer. Next, we

discuss how the various degrees of sortedness, used in the

paper, map to the the (K,L)-metric’s domain.

Degrees of Sortedness. While a data collection may have

arbitrary values for K and L, we qualitatively define four

degrees of data sortedness for the majority of our experiments:

fully-sorted (where data arrives completely in order), near-
sorted (where data arrives mostly in order albeit with a few

out-of-place elements), less-sorted (where data is arriving

mostly out-of-order but still contains few sorted entries) or

completely-scrambled (where data is arriving completely out-

of-order). A data collection is completely sorted if either K=0
or L=0, while near-sorted data collections usually have low

values for K and L, high values for either K or L but a low

value for the other. The latter is also near-sorted since either

the unordered entries are very close to their actual positions

or the unordered entries occur far from their actual positions

but are very few. Data with high values for both K and L are

less-sorted, and in extreme cases, are completely scrambled.

III. DESIGN ELEMENTS

We now present the four fundamental design elements,

which when appropriately combined, allow a tree-index to

enhance ingestion performance by exploiting data sorted-

ness. We decompose the design elements into (a) elements

improving ingestion for sorted data, and (b) elements that

enhance ingestion for intermediate data sortedness. The first

three (illustrated in Fig. 3), i.e., right-most leaf insertion, bulk

loading, and fill/split factor adjustment, benefit as-is, a fully

sorted data ingestion. When combined with buffering, it leads

to a design that can exploit any intermediate (degree of) data

sortedness in the ingestion workload to improve performance.

Right-Most Leaf Insertion. When inserting data in-order,

we can avoid the logarithmic tree traversal cost by always

maintaining a pointer to the right-most leaf node (tail leaf), as

shown in Fig. 3a. Every in-order insert to the minimum key

in the tail leaf, can directly be inserted into the tail leaf. This

costs only O(1), instead of O(logF (N)) due to tree-traversal.

Bulk Loading. If the data is fully sorted, we can perform

better than in-order insertion, by bulk loading [19], as shown

in Fig. 3b. This way, we can avoid accessing a node for every

entry, and amortize the insertion cost across F entries. While

bulk loading gives great index creation time if data is fully

sorted, it cannot exploit intermediate data sortedness.

Split Factor/Fill Factor Adjustment. We can further optimize

the shape of the tree by adjusting how we split the internal and
leaf nodes when ingesting data. Specifically, for fully sorted

data, the classical node split creates two half-full nodes, the

left of which never receives any future inserts and leads to poor

space utilization. In some cases, splitting the nodes evenly may

increase the index height as well, leading to asymptotically

increased access cost. Instead, if we anticipate data to arrive

fully sorted (or near-sorted), we can decide to split leaving

more space for future inserts. Suppose we split at an 80 : 20
ratio, 80% of the entries stay on the original split node and

the newly created one will only hold 20% of the data, as

shown in Fig. 3c. This also allows the nodes to have a higher

fill factor on average. Adjusting the split factor reduces the

number of overall splits, and the resulting higher fill factor

reduces the overall number of nodes, thus, improving insertion

performance as well as reducing the memory footprint.

Buffering. The above techniques offer benefits only if the

data is fully sorted. To maximize the benefits for intermediate

sortedness, we need to buffer incoming data and propagate to

the tree only those inserts that are in order. In §IV, we discuss

how to employ intelligent buffering and in-memory sorting to

provide efficient ingestion without hurting read performance,

outlining the crux of the SWARE paradigm.

IV. SWARE META-DESIGN

We now present the SWARE meta-design that exploits data

sortedness to enhance ingestion into tree-based indexes. We

demonstrate its usefulness on a B+-tree and a Bε-tree.

A. Sortedness-Aware Ingestion

Right-most leaf insertions and bulk loading help when

ingesting fully sorted data, however, having any intermediate

sortedness reduces their benefit. Thus, we intercept all index

insertions and add them to a dedicated in-memory buffer. The

buffer is a principal component of the SWARE framework and

sits on top of the basic index (shown in Fig. 4). Specifically, the

buffer performs opportunistic bulk loading via partial flushing.

Below, we describe the buffering mechanism in detail.

The SWARE-buffer. The SWARE-buffer is an intelligent in-

memory buffer that maintains all recently inserted data and

checks whether the entries are in order. To ensure its contents

are always in memory we pin its pages in the system’s

bufferpool. The data in the buffer is eventually inserted into the

index either through bulk loading in an opportunistic manner

(for entries with higher values than the data already in the

index), or through top-inserts via the root node of the tree. By

having this design, we can already guarantee that if data is

inserted in order, they will be efficiently bulk loaded. We now
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moves as new ordered entries are inserted. (b) An out-of-order entry
moves last_sorted_zone to the left. (c) Newer inserts are added
and last_sorted_zone only moves if required. (d) After a flush, the
remaining entries are sorted and last_sorted_zone is reset.

discuss the buffer flushing strategies that optimize ingestion

performance in the presence of a varying degree of sortedness.

Flush Strategy. Once the buffer is full, we flush it to the index

either by bulk loading or through top-inserts. Our goal is to

maximize the data inserted via bulk loading. When the buffer

is fully sorted by virtue of pre-existing data sortedness, we

bulk load the buffer contents with no sorting effort. Otherwise,

we would need to sort it before flushing. At this point, (i) if the

tree has strictly smaller values than the (now sorted) buffer, we

bulk load as many pages as possible, and then (ii) top-insert

overlapping entries through the root node.

Another decision we make at every flush cycle (i.e., every

time the buffer is full) is what proportion of the buffer to flush.

If we flush the entire buffer, we may insert entries that overlap

with future inserts (if data does not arrive in fully sorted order).

This would increase the number of top-inserts in subsequent

flush cycles. Thus, we only flush a fraction of the buffer. We

always flush the first eligible fraction of the buffer, and after

a flush, the remaining buffered entries are sorted and moved

to the beginning of the buffer to accommodate new inserts.

Zonemaps to Identify Overlaps. After a flush, the buffer is

partially full (at least half) and its contents are fully sorted.

Hence, we mark the last page containing sorted data as

the last_sorted_zone (Fig. 5a). Due to the potential

displacement, a new entry may either (i) overlap with data

in earlier pages, hence moving the last_sorted_zone to

the left (Fig. 5b), (ii) overlap without having to move the

last_sorted_zone (Fig. 5c), or (iii) strictly greater, thus

will move the last_sorted_zone to the right (Fig. 5d).

Zonemaps maintained at the granularity of a buffer page help

in performing a quick overlap test after every insertion to avoid

unnecessary sorting at every flush. This amortizes the cost of

sorting already ordered non-overlapping incoming data entries.

Once the buffer is full, we use the last_sorted_zone
to decide how much to flush. If the last_sorted_zone
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Fig. 6: The lifecycle of a point query.

is in the first half, we flush all pages up to this marker and

attempt to bulk load. This way, we avoid the sorting cost before
flushing. Otherwise, we flush half the pages in the buffer.

By partially and opportunistically flushing non-overlapping

entries, we amortize the potential top-inserts and maximize

bulk loading, thus, improving the ingestion performance.

B. Optimizing Read Queries

While the SWARE-buffer helps to harness the sortedness

by maximizing opportunistic bulk loading, its presence adds

an overhead to the read performance. Specifically, every query

first searches the buffer, and if it did not terminate in the buffer,

it performs a tree search. In the worst case, a read query will

need a full scan of the buffer. We now discuss how to reduce

this query cost overhead to something nominal.

Scanning the Unsorted Section First. In steady-state, the

SWARE-buffer can be in one of two states: (i) fully sorted or

(ii) with a sorted portion and an unsorted portion. Note that

even if the last_sorted_zone is moved to the beginning

of the buffer (due to an out-of-order entry overlapping with

the tree), we still have at least half of the buffer sorted (as we

flush at most half the buffer). So, for any point query, we only

need to scan the unsorted portion of the buffer that contains the

most recent data. If the target key is not found in this part of

the buffer, we continue to efficiently search the sorted section

of the buffer, and if the lookup has still not terminated, we

search the tree. However, for a key that is found in the buffer,

we terminate early and avoid the cost of searching the tree,

as the most recent version of the key would be the one in the

buffer. The lifecycle of a point query is shown in Fig. 6.

A BF to Skip the Unsorted Section. The unsorted section is

up to half of the SWARE-buffer, and thus, holds a small

fraction of the overall data (residing in the buffer and the tree).

As a result, queries without any temporal locality, have a low

expectation to terminate in the buffer. Thus, to avoid the cost

of unnecessary scanning the unsorted section, we maintain a

BF for this section, that is continuously updated as new entries

are inserted. This drastically reduces the cost of queries that

do not terminate in the unsorted section.
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Zonemaps to Skip Pages in the Unsorted Section. When a BF

probe returns positive, all pages of the unsorted section are

marked for scanning. However, we skip unnecessary page

accesses using the Zonemaps that are already part of the

SWARE-buffer (used to identify the last_sorted_zone).

Using Per-Page BF. While the BF and Zonemaps help avoid

many unnecessary accesses, they are insufficient in case of

lower data sortedness. Hence, we also maintain a BF for every

buffer page. These are updated as data is appended to the

buffer. Overall, a query starts searching in the unsorted section

by first visiting the global BF. In Fig. 7, we show with an

example that for a point query on key 1400, if the BF returns

a positive result, we access the Zonemaps to find which pages

may contain the target key. Subsequently, for the Zonemaps

that may contain the key, we probe the corresponding per-

page BF and we access only the qualifying pages. We discuss

further details about the filter configuration in §V.

Interpolation Search to Search Sorted Section. After search-

ing the unsorted section, if the query has not yet termi-

nated, it will search in the sorted section. Regardless of

whether the newly ingested data overlaps with the sorted

section (and thus, have moved the last_sorted_zone),

the data retained after the previous flush is kept sorted, and

we maintain the position marking this sorted section, as

previous_boundary. While the last_sorted_zone
may move to the left, as new entries are inserted into the

buffer, the previous_boundary may only move rightward

as long as entries are inserted in fully sorted order and until

the first out-of-order entry is inserted. We employ interpo-

lation search [43, 52] on the sorted section, that finishes in

O(log(log(N))) steps. This is a notable upgrade from the

binary search and is highly efficient unless there is a very

high data skew, in which case we can opt for a simple binary

search or a variation of exponential search [9].

An Optimized Read Path. Putting it all together, we have

now an optimized read path that avoids the vast majority

of unnecessary data accesses. As Fig. 6 shows, we maintain

two more Zonemaps: one for the SWARE-buffer and one for

the tree. If the desired key is not in the range of the buffer,

we skip the buffer entirely. On the other hand, in the worst

case, we may have to access the unsorted section of the

buffer. However, due to the per-page BFs, even if the data

is completely scrambled, we will only access a very small

number of pages from the unsorted section. We discuss more

optimizations and range queries in §IV-C.

C. Fine-tuning a Sortedness-Aware Index
The SWARE meta-design introduces new components and

tuning knobs that can be carefully calibrated to further improve

performance of a sortedness-aware index.

Choice of Sorting Algorithm. To reduce the cost of reads,

we sort the buffer after every flush. Ideally, we want the

sorting cost to be minimal to attain the maximum benefits

of the SWARE paradigm. While any sorting algorithm that

leverages data sortedness (e.g., TimSort [44], Replacement

Selection Sort [34]) can be used, here we consider three sorting

algorithms: (i) quicksort, as it is common and has minimal

space requirements, (ii) (K,L)-adaptive sorting [7], as it ag-

gressively takes into account pre-existing data sortedness with

O(K + L) space usage, and (iii) mergesort (specifically, the

C++ standard library std::stable_sort), as it maintains

relative order of duplicate values with O(n) space usage.

Because we need to maintain the relative order of duplicates,

we are constrained between mergesort and (K,L)-adaptive

sorting. Our experimental analysis shows that for low data-

sortedness, mergesort outperforms (K,L)-adaptive sorting (in

fact, (K,L)-adaptive sorting fails for significantly high values

of K or L). However, for K < 20% or L < 5%, their

performance is similar, and we opt for (K,L)-adaptive sorting

due to its smaller space requirements (K + L < n) [7].

So, when the estimated (meta-data) values are K < 20% or

L < 5% of the buffer size we employ (K,L)-adaptive sorting

while using std::stable_sort), otherwise.

Query-Driven Sorted Components. We further employ a

new read optimization technique to adaptively add struc-

ture to the unsorted part of the buffer through incoming

queries, called query-driven partial sorting (inspired by Crack-

ing [31, 32] and adaptive merging [27]). This technique

increases the number of sorted sub-components within the

buffer (called query-sorted blocks) that can be probed quickly

using the faster interpolation search. We set a threshold

(query_sorting_threshold) to restrict the size of the

unsorted part of the buffer. If this threshold is exceeded,

the next read query will sort this portion and create a

new sorted component, before continuing to buffer incoming

inserts. Similar to progressive indexing [29] that allocates

a small indexing budget for every query, we allocate a

small sorting budget for every query as long as we have

enough entries in the unsorted component. In general, the

SWARE-buffer may contain the main sorted section, multiple

sorted sub-components (query-sorted blocks) of size equal

to unsorted_threshold, and a small unsorted section.

For example, if the query_sorting_threshold is set to

10% of the buffer size, the buffer can contain up to four query-

sorted blocks in addition to the remaining unsorted section

and the main sorted section, as shown in Fig. 8. Note that the

remaining unsorted section still uses all the metadata discussed
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in §IV-B. Once the buffer is full and needs to be sorted (either

before or after flushing qualifying entries), we sort the small

unsorted component, while the remaining sorted blocks are

merged. This approach further amortizes the ingestion cost.

Supporting Range Queries. Every range query first checks

the SWARE-buffer Zonemap and if there is no overlap, the

query executes by only accessing the tree. Otherwise, we begin

by collecting the qualifying entries from the unsorted section.

To do so, we first sort the (previously) unsorted section. We

avoid re-sorting this section via a dedicated flag, which is

reset upon receiving a new out-of-order insert. After retrieving

entries from the unsorted section, we merge them with the

qualifying entries from the sorted section and the query-driven

segments (if any). The collected entries are then sort-merged

with qualifying entries from the tree and returned.

SWARE-buffer Size. The size of the in-memory buffer is cru-

cial to both ingestion and query performance of a sortedness-

aware index. Our goal is to have a large enough buffer that can

capture sortedness (specifically focusing on L) to maximize

opportunistic bulk loading. However, a large buffer implies

costlier reads, since the cost of scanning the unsorted part will

be significant. Thus, it is crucial to strike the right balance to

obtain the ideal performance. In §V, we vary the buffer size

and relative values of K and L, and show that even with a

buffer significantly smaller than L, we can absorb sortedness

to a large degree, without hurting queries.

Adjusting Split & Fill Factors. The textbook bulk loading

algorithm used in §IV-A fills every node with the bulk loaded

data to maximize node utilization (and thus, minimizes space

amplification). Since we anticipate several top-inserts (the

fraction of which depends on the sortedness of the workload),

we also leave in every bulk loaded node a few empty slots (5%)

to facilitate top-inserts without expensive cascading splits.

Similarly, in textbook insertion and bulk loading, an internal

node when full splits at 50% to generate two half-full internal

nodes. Since during bulk loading, we anticipate that most of

the future inserts will be of larger values, we also adjust the

split factor to more than 50%, as shown earlier in Fig. 3c.

This maintains most of the internal nodes of the underlying

tree nearly full, even when the data is coming fully sorted,

and most importantly, allows us to avoid the worst-case

space amplification of B+-trees for sorted data. In addition

to reducing space amplification, we also reduce the number of

node splits, lowering the overall insertion cost.

D. Discussion
Deletes in the SWARE-buffer. Every delete in a SA B+-tree
is inserted as a tombstone in the SWARE-buffer, if within the

buffer’s range of indexed keys. Deletes outside the buffer’s

range and within that of the tree are directly applied to the

tree. Here, we inherit a delete debt that is paid off during

a flush. During data reorganization (e.g., due to query-driven

sorting or during a flush), tombstones discard any invalidated

keys. When flushing the buffer, tombstones are propagated to

the tree as classical deletes through the root node.

Concurrency Control in the SWARE-buffer. Concurrency

control for B+-tree has been extensively studied in the past [6,

10, 24], so here we focus on the updates needed to the

SWARE-buffer. Inserts to SA B+-tree are appends, with the

exception of an insert that causes a flush. Every insert in-

stantaneously takes a lock on the entire buffer to check if

it will cause a flush. If no flush is triggered, the buffer-

wise lock is released, and the worker locks only the page to

append (similar to lock-crabbing [24]) and the corresponding

metadata (Global BF, Zonemaps of the updated page, and

last_sorted_zone). Note that the page-wise lock protects

all page-level metadata. If a flush is triggered, the buffer-wise

exclusive lock will be held until the flush is complete. All

retained locks are released post-insertion. Queries by default

acquire read locks. However, when query-driven sorting (in-

spired by Cracking [31]) is triggered, we upgrade the read lock

to an exclusive lock (in a similar manner that concurrent read

queries in adaptive indexing require concurrency control [26]).

These mechanisms allow multi-threaded execution where in-

serts and queries on SA B+-tree are issued concurrently.

V. EXPERIMENTAL EVALUATION

We illustrate the benefits of the SWARE paradigm by

applying it to a B+-tree and Bε-tree to form their sortedness-

aware counterparts: SA B+-tree and SA Bε-tree. We present the

performance evaluation of the SA B+-tree in §V-A-§V-F. We

then demonstrate the benefits of SA Bε-tree in §V-G. Lastly, we

experiment with TPC-H [51] data to compare the performance

of a B+-tree and a SA B+-tree.

Experimental Setup. We run the experiments in our in-house

server equipped with two sockets each with an Intel Xeon

Gold 5230 2.1GHz processor with 20 cores and virtualization

enabled. The server has 384GB of RDIMM main memory at

2933 MHz with a 240GB SSD and runs CentOS 8.

Index Design. We use an in-house B+-tree (inspired by the

state-of-the-art implementation [11]) and Bε-tree [8] imple-

mentations that support opportunistic bulk loading and variable

fill/split factors. Note that the Bε-trees internal node buffer is

unaffected by the variable fill/split factors. For the Bε-tree, we

use ε=1/2 [8]. Both the B+-tree and Bε-tree implementations

are equipped with a bufferpool of 300GB, so most experiments

are purely in-memory. The bufferpool is orthogonal to the

SWARE-buffer, which is always in main memory. The default

entry size is 8B (4B key), and we use a 4KB index page size.

Our code is available at https://github.com/BU-DiSC/sware.

Default Setup. By default, the size of the SWARE-buffer is

40MB which can hold up to 5M entires. The buffer is imple-

mented as a dense array accompanied by the Zonemaps and

BFs. We maintain filters at two levels: (i) global BF and (ii)

per-page BFs. For the global BF we pre-allocate 10 bits-per-
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Fig. 9: Workloads with varying sortedness: (a) sorted, (b) K=10%, L=10%, (c)
K=20%, L=10%, (d) K=50%, L=25%, (e) K=100%, L=50%, and (f) scram-
bled (uni-rand). x-axis: position of entry in data, y-axis: entry-value. The
scattered points represent K whereas the gray-band denotes the L.

entry (giving ∼ 0.8% false-positive rate) for the entire buffer’s

capacity, while for the per-page BFs, we pre-allocate 10 bits-

per-entry for a page’s capacity. We use MurmurHash [3]

combined with hash sharing and bit rotation [53] for hashing.

Data Sortedness Benchmark & Workload. We use the

Benchmark on Data Sortedness [46] for testing indexes

against varying sortedness. The benchmark uses the (K,L)-
near sorted metric and creates a family of differently sorted

collections that vary in both K and L (as a fraction of the

total data size). Fig. 9 shows a sample set of differently

sorted collections, represented by position and value. For

performance evaluation, the benchmark measures: (i) raw

ingestion latency, (ii) overall operational latency of a mixed

workload with variable read/write ratio.

We use the benchmark’s workload generator to create in-

gestion workloads with varying sortedness. Unless otherwise

mentioned, the ingestion workload consists of 500M key-value

entries with a total size of 4GB, and the query workload has a

variable number of uniform random non-empty point lookups,

interleaved with inserts after 80% of the ingestion is complete.

SWARE Tuning. By default, SA B+-tree and SA Bε-tree
are tuned as follows. The SWARE-buffer flushes 50% of the

entries when saturated. The nodes split at an 80:20 ratio, and

the opportunistic bulk loading fills every leaf up to 95%. By

default, we set the query-based sorting threshold to 10%.

A. Mixed Workload

We first compare the performance (using the offered

speedup) of SA B+-tree with the B+-tree by executing a set

of mixed workloads with interleaved inserts and queries. We

vary the read-write ratio, constructing a continuum between a

write-heavy and a read-heavy workload. For each workload,

we also vary the data sortedness as: (i) fully sorted (K=0%),

(ii) near-sorted (K=10%, L=5%), (iii) less sorted (K=100%,

L=50%), and (iv) scrambled (uniformly random).

SA B+-tree Outperforms B+-Tree. Fig. 10 shows that

SA B+-tree significantly outperforms B+-tree if the data is

fully sorted or near-sorted. For an ingestion-heavy work-

load, SA B+-tree leads to 8.8× speedup for fully sorted

data and 5× better for near-sorted data in ingestion-heavy

workloads. SA B+-tree achieves this by buffering entries

in-memory to add structure to the data, thus, reducing
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Fig. 10: SA B+-tree (Buffer size=5M) is efficient with reasonable data
sortedness for any read-write ratio.

the number of top-inserts. Fig. 11 shows that SA B+-
tree performs significantly fewer top-inserts for workloads

with a high degree of sortedness. With fully sorted data,
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Fig. 11: For higher K%, SA B+-
tree performs more top-inserts
and bulk loads fewer entries.

entries are ingested only

through the bulk insertion,

while for near-sorted data,

only ∼4% are top-inserts.

As data becomes less

sorted, SA B+-tree mimics the

behavior of a B+-tree. Now,

SA B+-tree’s ability to capture

the unordered entries using a

relatively small buffer (1% of

data size) diminishes, and top-inserts are comparable to a

B+-tree. Regardless of the sortedness, SA B+-tree’s benefit is

more pronounced for write-intensive workloads. Conversely,

in Fig. 10 we observe that for a lookup-heavy workload

(90% lookups), SA B+-tree offers a speedup of 1.4× and

1.3× for fully sorted and nearly sorted data, respectively, as

the significant performance benefits of SA B+-tree during

ingestion are countered by the lookup overhead incurred.

Ingesting Scrambled Data Does Not Benefit from SA
B+-tree. When the ingestion is scrambled, SA B+-tree does

not offer performance benefits. Specifically, when the data is

generated uniformly random, using a B+-tree is about 20%

faster than SA B+-tree, regardless the read-write proportion

in the workload. This is a result of the finite buffer being

unable to capture the (minimal) sortedness of the incoming

data, that in turn, forces SA B+-tree to always perform top-

inserts. Consequently, the SWARE-buffer management cost

(sorting the buffer, managing metadata, and probing BFs

during lookups) does not pay off, however, it keeps the penalty

to a modest 20%. This observation is consistent with our goals

and our expectation. While SA B+-tree is very useful for a

varying degree of sortedness, for fully scrambled data, the

worst-case guarantees of a classical B+-tree are sufficient.

B. Raw Performance

Next, we compare the SA B+-tree and B+-tree in terms of

ingestion and query performance separately. In the ingestion

workload, we vary K while keeping L constant, as varying L
would entail changing the buffer size as a proportionally to L.

Setup. We insert 500M entries (4GB) and subsequently per-

form 50M non-empty point lookups. To report the worst-
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Fig. 12: Performance of SA B+-tree (buffer size=40MB) for L=5%: (a) SA B+-tree offers better ingestion performance with workloads with some degree of
data sortedness. (b) SA B+-tree incurs a small overhead for point queries. (c) For mixed workloads with equal proportions of reads/writes, the ingestion-benefits
outweigh the lookup-overhead and offers better overall performance. (d) SA B+-tree offers competitive performance for both short and long range scans.
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Fig. 13: Latency breakdown of operations in SA B+-tree. (a) Time spent by SA
B+-tree for top-insert escalates when decreasing sortedness. (b) Tree search
dominates query latency, while time spent managing metadata and maintaining
Zonemaps + BFs (SWARE ops.) increases for lower data sortedness.

case lookup performance we ensure the buffer is full before

executing any query. We execute 100 range queries generated

randomly from the key domain as well as 100 range queries

targeting the recently inserted data for various selectivities.

SA B+-tree Dominates the Ingestion Performance. Fig.

12(a) shows that SA B+-tree performs significantly better

than B+-tree for inserts if there exists any data sortedness.

While SA B+-tree shows up to ∼90% improvement in in-

gestion latency for fully sorted data, it still manages an

impressive 23% improvement over the B+-tree’s ingestion

latency even as sortedness decreases. Fig. 13a shows the

breakdown of the ingestion costs in SA B+-tree for (i) fully

sorted (K=0%), (ii) nearly sorted (K= 10%, L=5%), and

less sorted (K=100%, L=50%) workloads. We observe that

for fully sorted workloads, the SA B+-tree is able to bulk

load the entire data set without any additional processing.

For near-sorted data, SA B+-tree sorts the buffer periodically

which accounts for 38% of the workload execution latency.

However, the additional effort in establishing structure leads

to significantly fewer top-inserts, which in turn, reduces the

overall latency. Finally, for less sorted data, SA B+-tree ingests

fewer entries via bulk loading. Instead, a significant amount

of data is ingested through top-inserts, resembling a B+-tree.

However, SA B+-tree still outperforms the state of the art by

a significant margin (Fig. 10). Note that SA B+-tree achieves

this performance with a buffer that is smaller in size when

compared to L (1% vs. 5%). This implies that even with a

considerably small buffer that does not capture all of the out-
of-order entries, SA B+-tree performs significantly fewer top-

inserts and is able to bulk load a large fraction of the data.

Fast Ingestion Comes at a Small Cost for Queries. Fig. 12b

compares the point lookup performance of SA B+-tree to that

of the B+-tree. We observe that SA B+-tree incurs an overhead

between ∼5% and ∼26% for point lookups. This is due to the

additional time spent searching for the target key in the buffer.

Fig. 13b shows the breakdown of the point query latency in

SA B+-tree for the same (i) fully sorted, (ii) nearly sorted and

less sorted, workloads as before. Regardless of data sortedness,

∼80%-99% of the query latency is attributed to searching

for the target key in the tree. With a full buffer, SA B+-tree
suffers an overhead due to (i) probing the SWARE-buffer using

interpolation search and sequential scans and (ii) performing

SWARE-operations like sort-merging the entries in the buffer

and updating metadata. This overhead depends on the number

of entries in the buffer and the data sortedness. For a fair

comparison, we maintain a full buffer before executing the

query workload; however, in practice, the buffer is expected

to be 50% saturated on average, potentially cutting down the

query overhead by half. Further, querying the buffer and the

tree in parallel can potentially reduce the lookup cost.

The Benefits Outweigh the Overhead almost Always.
Fig. 12c shows the mean latency per operation for a mixed

workload. We observe that for a workload with equal reads

and writes, SA B+-tree improves the mean latency by ∼70%
for fully and nearly sorted data. Even for workloads with

lower sortedness, SA B+-tree offers 1.25× improved overall

performance. To summarize, for read-only workloads, the

performance of SA B+-tree is similar to that of B+-trees, as the

buffer remains empty, and thus, adds no overhead. However,

if a mixed workload is read-dominated (writes < 1%), the

incurred read overhead outweighs the benefits of ingestion.

SA B+-tree Offers Competitive Scan Performance. Fig. 12d

shows that SA B+-tree performs similarly to B+-trees for

random range queries with different selectivity, varying from

0.01% (50K entries) to 10% (50M entries). Overall, SA B+-
tree offers an improvement of 3%−12% in mean latency. For

larger selectivities, the performance of SA B+-tree remains

comparable to the baseline even when considering P95 and

P99 latencies. We only observe a maximum overhead of 1% at

the P99 latency. For range queries that target the most recently

inserted data, SA B+-tree is 0.4%−8% faster on average, and

leads up to 7% lower P95 latency, and 0.1%−1.4% lower P99

latency (graph omitted for brevity). With the higher fill factor

in SA B+-tree, we reduce leaf-scan costs that compensate

for any overhead due to probing multiple components of

the buffer, and thus, maintain a comparable range query

performance to the baseline B+-tree.

C. Workload Influence

Setup. To measure the speedup offered by SA B+-tree over

the state-of-the-art B+-tree for mixed workloads, we vary
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both K(%)=(0, 2, 10, 20, 100) and L(%)=(1, 5, 10, 50) and

experiment with 20 different degrees of data sortedness.

Varying the Workload Composition. We observe in Fig. 14a-

c that as reads increase in the workload, the read-overhead

incurred by SA B+-tree counterbalances the ingestion benefits.

Even for fully sorted data, increasing the reads from 10% to

90% reduces the speedup from 9.2× to 1.4×. Fig. 14 thus

serves as a guideline for applicability of the SA B+-tree design.

Varying the Degree of Sortedness. Analyzing the speedup

for K=2% (second column) and L=1% (fourth row) in Fig.

14a, we observe that K influences the performance of SA B+-
tree to a greater extent compared to L. This is because if

the buffer size is comparable to the L-value, K drives the

cost of data reordering, and relative overlaps between buffer

cycles (causing top-inserts) are minimal. However, as L gets

larger, it impacts the overall speedup more significantly. With

an increase in both K and L, the SA B+-tree operates similar

to B+-trees, and the speedup approaches 1.

D. SWARE-buffer Tuning

Setup. Here, we first increase the buffer size to 5% of the data

size and compare the results with those discussed in §V-B.

Next, we run a workload with 500M inserts followed by 50M

lookups, and vary the buffer between 0.5%-5% of the data

size. For a mixed workload, we pre-load the index (to 80%)

and interleaved equal reads and writes with varying sortedness.

Increasing the Buffer Size Improves Performance. Increas-

ing the buffer size allows us to opportunistically bulk load a

larger fraction of the data. Fig. 14d shows the speedup offered

by SA B+-tree when SWARE-buffer size is increased to 5% of

the data size (200MB) for a mixed workload (50%W-50%R).

Comparing with Fig. 14b (buffer size of 1%), we observe

that the 5× increase in the buffer size further increases the

overall speedup to 8.2× (a 95.2% increase) for a fully sorted

data; between 27.6% and 176.9% for nearly sorted data; and

improves the speedup to 1.3× for lower data sortedness.

Buffer Size Affects the Ingestion Performance Significantly.
Fig. 15 shows that the buffer size affects the ingestion and

lookup performance for SA B+-tree. We vary the buffer size

for a fixed sortedness (K= 10%, L=5%), and observe that

even with a small buffer equivalent to 0.5% of the data

size, SA B+-tree offers a 5.7× speedup during ingestion.

As the buffer size increases to 5%, the ingestion speedup

increases to 7× due to increased opportunistic bulk loading.
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Fig. 15: The ingestion performance of
SA B+-tree increases with buffer size.

However, query performance

in SA B+-tree is marginally

affected by the buffer size.

A 10× increase in buffer

size increases query latency

by 11%. This validates our

observations from Fig. 12b

and 14c regarding the ap-

plicability of the SWARE

paradigm; however, the benefits of SA B+-tree (Fig. 10)

outweigh the read-overheads even for a small fraction of writes

(≥5%).

Tuning the Buffer Flush Threshold. Adjusting the flush

threshold of the SWARE-buffer affects the overall performance

of SA B+-tree. We now vary the proportion of entries flushed

from the buffer at a given cycle between 25%, 50%, and 75%,

and run mixed workloads. In the interest of space, we omit the

figure and focus on key observations. When the buffer flush

threshold is set to 25%, SA B+-tree offers a speedup between

1.0× and 4.0×. For flush threshold 50%, the speedup of SA
B+-tree ranges between 1.0× and 4.3×, and for a threshold of

75%, between 0.91× and 4.2×. Hence, SA B+-tree performs

best for 50% flush threshold, which we default to.

Tuning Query-Based Sorting. Fig. 16 shows the implications

of query-based sorting on SA B+-tree’s overall performance.

We vary the query-based sorting threshold between 1%-100%
(i.e., query-based sorting is disabled for 100%) and run mixed

workloads to compare the speedup against the baseline.

Employing query-based sorting offers a performance
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Fig. 16: Query-based sorting threshold
set to 10% offers the highest speedup.

improvement between 7%
(for 1% threshold) and

25% (for 10% threshold).

As expected, gradually

sorting the buffered data

significantly accelerates

query performance on

average since the unsorted

section is kept small.

Moreover, we observe that

query-based sorting has diminishing returns if applied

too frequently. Specifically, a threshold of 10% offers the
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Fig. 17: Latency breakdown for various SA B+-tree configurations. (a) Adding
BFs to the SWARE-buffer slightly increases the insert latency. (b) The use of
BFs in the buffer for lookups is more pronounced as data sortedness decreases.

maximum speedup for any data sortedness, while other

values affect performance adversely (if at all). Reducing the

threshold (to 1% or 5%) leads to too frequent sorting while

increasing the threshold (to 25%) results in fewer sorted

blocks so scanning the unsorted section remains expensive.

Thus, we empirically tune SA B+-tree to perform query-based

sorting with the threshold at 10%.

Benefits from the Global and Per-page BFs. Here, we

compare SA B+-tree with two variations: one without any BF

(Naı̈ve SA B+-tree) and one with only the global BF (SA B+-

tree-Global BF) to demonstrate the benefits of BFs. Updating

the BFs for every insert marginally increases the ingestion

latency (Fig. 17a). The added cost is a small fraction of the

total insert time and is settled by the significant performance

improvement during lookups. Fig. 17b shows that adding the

global BF speeds up queries by up to 14%, while the per-

page BFs boost performance further to 16%. The positive

impact of per-page BFs is limited by query-based sorting

that also helps avoid scanning unnecessary data (restricting

scanning to <10%). Note that ingestion in SA B+-tree is

always significantly faster than B+-tree regardless the BF cost.

Overall, the benefit of BFs is pronounced with more reads.

Tuning Zonemaps. The SWARE-buffer uses Zonemaps dur-

ing ingestion to approximate sortedness (§IV-A), thus, are

integral to the overall design. While we opt to always use them

at query time since they are always available, we observed that

skipping Zonemaps for lookups reduces performance by 35%.

Tuning Split Factor. Table I shows the normalized number

of leaf splits compared to the textbook split ratio of 50:50 in

SA B+-tree. Here, we vary the split ratios of the underlying

tree index (B+-tree) to split at 50%, 60%, 70%, 80%, and 90%
when ingesting data with varied degrees of sortedness. While

splitting the leaf node at 90% offers up to a 22% reduction

in the total number of splits during ingestion for near-sorted

data, this suffers a ∼ 1.8× overhead when inserting data with

lower sortedness. In fact, the textbook splitting at 50% works

best with low data sortedness as it leaves enough space for

unordered entries to be inserted without splitting. Overall, we

observe SA B+-tree offers the best performance across any

Split Ratio K= 2%, L= 1% K= 20%, L= 10% K= 100%, L= 50%

50 : 50 1.00 1.00 1.00
60 : 40 0.90 0.97 0.94
70 : 30 0.82 0.96 1.04
80 : 20 0.79 0.96 1.27
90 : 10 0.78 0.98 1.82

TABLE I: Splitting at 80% best reduces leaf splits overall (lower value for
the normalized number of splits implies better memory utilization).
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Fig. 18: SA B+-tree always outperforms B+-tree on disk (1% bufferpool).

data sortedness by splitting at 80%, which we use by default.

E. On-Disk Performance

We now experiment with an SA B+-tree setup that accesses

disk-resident data. For this, we configure the bufferpool to fit

only the internal tree nodes (∼1% of data size). The SWARE-

buffer is set to 1% of the data size. We repeat the experiment

for variable data sortedness and variable read/write ratios, and

present the speedup of SA B+-tree over B+-tree as shown in

Fig. 18. From the disk-based experiments, we draw similar

conclusions to the in-memory ones (Fig. 10), but with a

notable difference. With the data on disk, SA B+-tree always
outperforms B+-tree, even for read-intensive workloads and

fully scrambled data. This is because, regardless of sortedness,

we increase locality through our sorting procedures in the

buffer. Though this is applicable for both in-memory and disk-

based experiments with SA B+-tree, the overhead of managing

the buffer is negligible compared to accessing tree nodes on

disk. Overall, when spilling to disk, SA B+-tree offers up to

8× performance benefits for write-intensive workloads with

high data sortedness, while always outperforming B+-tree.

F. Scalability

To analyze the scalability of SA B+-tree, we increase the

number of entries ingested from 31.25M to 1B while varying

K and L proportional (5%) to the workload. We also scale

SWARE-buffer by keeping it equal to 1% of the dataset size.

Here, we run mixed workloads with equal reads and writes.

SA B+-tree Scales Better than the State of the Art. In

Fig. 19a, we observe that the B+-tree performance remains flat

as the data size increases, which is attributed to the tree having

the same height. Further, we observe a marginal increase in

latency for 16GB, which is the point that the B+-tree height

increases by one. SA B+-tree has a similar trend (it remains

flat with one step increase at 4GB) and it offers a speedup

between 2.32× and 3.14×. The speedup comes from a lower

tree height due to the higher factor when compared with the

baseline. Overall, maintaining the buffer size proportional to L
allows SA B+-tree to absorb out-of-order elements at a similar

pace as we increase the data size.

SA B+-tree Scales Better for Fixed L and Buffer Size.
In the next experiment, shown in Fig. 19b, we maintain L
and the buffer size constant as we vary the data size. We
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Fig. 19: SA B+-tree scales well with data size and outperforms B+-tree when:
(a) we vary both K and L as a fraction (5%) of data size; (b) we vary K as
a fraction (5%) of data size but keep L fixed (L=12.5M).

Datasize 0.5GB 1GB 2GB 4GB 8GB 16GB

#Entries 31.25M 62.5M 125M 250M 500M 1B
%Ent. in Buff. 8% 4% 2% 1% 0.5% 0.25%
#.Pages scanned per query 0.094 0.0468 0.0227 0.0110 0.0052 0.0024

TABLE II: For a fixed L and buffer size, the fraction of entries as well as
the pages scanned in the buffer reduce with increasing workload data size.

set L to 12.5M entries and the buffer size to 40MB (holding

2.5M entries). We then run a mixed workload with an equal

number of reads and writes on a preloaded index. As expected,

the behavior of the B+-tree is the same as in the previous

experiment. On the other hand, we observe that the average

latency per operation for SA B+-tree reduces as the data size

increases, offering a 43% to 65% improvement compared to

the B+-tree. This result may initially seem counter-intuitive,

however, it is explained by the third row of Table II which

reports the number of buffer pages scanned per query for the

experiment in Fig. 19b. Since both L and the buffer have fixed

size, the fraction of data retained in the buffer reduces with

data size. For example, 8% entries are contained in the buffer

for a 0.5GB dataset, while it is only 0.25% for a 16GB dataset.

Since our queries are uniformly random in the entire domain,

a smaller fraction of data kept in the buffer means that fewer

queries will access the buffer, hence on average fewer unsorted

buffer pages will be scanned per query, which is the most

expensive part of the query in SA B+-tree. Overall, this leads

to a 22% reduction of latency per operation for SA B+-tree as

we increase the data size from 0.5GB to 16GB.

G. Sortedness-Aware Bε-tree

We now evaluate the SA Bε-tree against a Bε-tree. Here,

we compute the normalized speedup of both the indexes with

varying sortedness against the performance of a Bε-tree with

scrambled data, using mixed workloads.

SA Bε-tree further boosts performance. By applying the

SWARE paradigm to the Bε-tree, we further amplify its per-

formance with increasing data sortedness. Fig. 20 shows that

SA Bε-tree significantly outperforms a Bε-tree for any read-

write ratio or data sortednes. The Bε-tree by itself improves

its performance with increasing data sortedness due to having

a buffer in every internal node. This internal node buffer

makes the Bε-tree ingestion friendly, compared to the B+-tree,

and is able to benefit from data sortedness to some extent.

Meanwhile, SA Bε-tree fully exploits data sortedness, offering

up to 7.8× relative speedup to the Bε-tree. The SA Bε-tree
opportunistically bulk loads when possible, leaving internal

node buffers empty. Top inserts (if any) occupy this empty

Read : Writes
Buffer Size (%data size )

0.05% 0.1% 0.25% 0.5% 1.0%

10% : 90% 1.63× 2.60× 2.88× 4.46× 5.28×
25% : 75% 1.54× 2.40× 2.49× 3.62× 4.57×
50% : 50% 1.56× 2.07× 2.82× 3.21× 3.40×
75% : 25% 1.25× 1.65× 1.72× 2.09× 2.01×
90% : 10% 1.14× 1.24× 1.28× 1.42× 1.41×

TABLE III: When querying TPC-H data, SA B+-tree always outperforms B+-
tree offering speedups between 1.14× and 5.3×.

space without having to flush entries to lower levels, hence,

improving overall performance. The internal node buffer of

the Bε-tree, however, induces an overhead during lookups [8].

For this reason, we see a noticeable drop in the performance

of both indexes with increasing reads, though the SA Bε-tree
still offers at least a 1.1× relative speedup compared to the

Bε-tree. Thus, write-optimized tree indexes like the Bε-tree

further benefit by using the SWARE paradigm to improve

ingestion performance by exploiting data sortedness.

H. Experimenting with TPC-H
Setup. For this experiment, we quantify sortedness of data

from the lineitem table of TPC-H [51] data. We sort

the tuples based on the shipdate attribute which, in

turn, creates a nearly sorted data set with respect to the

receiptdate attribute. We attribute this degree of sort-

edness on receiptdate as: K=96.67% and L=0.1% of

the total 6M tuples. Using these values of K and L, we use

our custom workload generator to obtain a (K,L)-sorted data

collection for ingestion. For both SA B+-tree and the B+-tree,

we preload the index with 4.8M entries and then execute mixed

workloads. We also vary the buffer size between 0.05% and

1% of the data size and report the speedup in overall latency.

SA B+-tree Offers Superior Performance. Table III shows

that SA B+-tree performs significantly better than B+-trees

across all buffer sizes and workload compositions. Even with a

buffer that is 0.05% of the data size, SA B+-tree offers between

1.14× and 1.63× speedup. As the buffer size increases, it

is able to cache more entries before flushing, which reduces

the number of top-inserts performed, improving ingestion

performance. We also observe that the benefits of SA B+-tree
diminish as the proportion of reads increase in the workload;

however, even for a workload with 90% reads, SA B+-tree
offers a speedup of 1.3× on average. Interestingly, for larger

proportions of reads (≥75%), a larger buffer size (≥1%)

causes reads to probe more data in the buffer for every

lookup, which, in turn, causes a slight drop in SA B+-tree’s

speedup. Overall, this experiment highlights that the SWARE

meta-design is able to offer significant performance benefits

compared to the state of the art with a very small buffer size

(0.05%) even for workloads with higher reads (90%).

SA B+-tree also outperforms B+-tree for high L and
low K. Here, we tweak our workload generator to obtain a

data collection of 6M tuples with K = 5% and L = 95%,

i.e., another extreme of sortedness, while repeating the same

experiment as TPC-H data. We observe that SA B+-tree offers

at least 13% improvement in overall performance against the
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B+-tree (Fig. 21) with a buffer equivalent to only 1% of the

total data size. If we increase the buffer size to 2% (or 5%),

we gain up to 71% in overall performance, as a larger buffer is

able to better capture the overlapping entries during ingestion.

VI. RELATED WORK

To the best of our knowledge, this is the first work on

designing sortedness-aware indexes. Here, we discuss the

literature on ingestion-optimized index structures.

Optimizing for Tree Ingestion. B+-trees are widely used

indexes in commercial data systems due to their balanced

ingestion and read performance [17]. Several variants have

also been proposed that optimize ingestion via batching. For

example, T-tree [36] improves insertion and lookup perfor-

mance by storing pointers to data in the nodes. To reduce

ingestion latency, CSB+-tree [47] and PLI-tree [50] maximize

cache line utilization by using arithmetic operations (instead

of pointer chasing) to locate the child nodes. YATS-tree [33] is

a hierarchical index structure that maximizes bulk insertion by

pushing new inserts into separate blocks based on a total order.

Partitioned B+-trees [23] optimize bulk insertion by using an

artificial leading column to always append, which leads to

creating multiple indexes on overlapping data.

While the aforementioned B+-tree-variants improve in-

gestion performance, the SWARE paradigm allows them to

further optimize ingestion in the presence of data sortedness.

LSM-trees. LSM-trees [38, 41] optimize data ingestion by

buffering entries and flushing them to disk as sorted runs;

however, this comes at a high write amplification cost. The

entries are repeatedly re-written to disk as they are periodically

sort-merged to create larger sorted collections of data through

compactions [48]. While LSM-trees aim to maximize ingestion

throughput, they are not designed to exploit sortedness. In fact,

most LSM-designs are completely agnostic to data sortedness

and perform the same amount of merging and (re-)writing of

the data on disk even when the data arrive fully sorted. For

LSM-trees employing partial compactions with least overlap
data movement policy [48], it can accelerate ingestion of

sorted data; however, these benefits do not apply for nearly

sorted data. LSM can benefit from the SWARE meta-design to

better exploit variable sortedness. Further, the LSM design per
se can be optimized to better handle near-sorted data ingestion.

Data Series and Data Streaming. Data series store data

with a monotonically increasing component, typically a times-

tamp [42]. Data series indexing assumes that data ingestion

follows the expected order [35, 54]–[56]. The ingested data

is converted to shapes using specialized representations like

iSAX [13], in order to allow similarity comparisons between

data series. Data streaming applications operate on windows

of data (typically time-based) to calculate state on the fly, and

then, discard the incoming entries [14, 21]. Hence, streaming

systems inspect whether data arrives out of the expected order

and often use a buffer to capture this arrival skew [49]. They

do not build an index for the entire dataset, rather, the default

expectation is again that data arrives in the expected order.

Contrary to data series and data streaming, in relational

systems, the arrival of data is, in general, scrambled; however,

indexes are not designed to exploit data arriving with some

order. In this work, we treat sortedness as a resource, and

we build a framework that allows indexes to substantially out-

perform their classical counterparts if data arrives with some

order, while otherwise falling back to baseline performance.

VII. CONCLUSION

Inserting data to an index can be perceived as the process of

adding structure to an otherwise unsorted data collection. We

identify inherent data sortedness as a resource that should be

harnessed when ingesting data. State-of-the-art index designs

like B+-trees support faster ingestion through bulk loading

when data arrives fully sorted, however, they fail to benefit

from sortedness when data is near-sorted.

To address this, we propose an index meta-design that

allows for progressively faster ingestion for higher data sorted-

ness. Our proposed SWARE paradigm, combines opportunistic

bulk loading, index appends, variable split/fill factor, and an

intelligent buffering scheme to amortize the index insertion

cost. To ensure competitive lookup performance, we augment

the design with Bloom filters, Zonemaps, and query-based

sorting that alleviate read overheads. By applying the SWARE

paradigm to a B+-tree and a Bε-tree, we demonstrate that

their sortedness-aware counterparts, SA B+-tree and SA Bε-
tree, outperform their baselines by up to 8.8× and 7.84×.
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